Intersection number of immersions

(Difference between revisions)
Jump to: navigation, search
(Introduction)
(Definition)
Line 9: Line 9:
== Definition ==
== Definition ==
<wikitex>;
<wikitex>;
Let $M$ be an oriented $m$-dimensional manifold. The '''homology intersection pairing''' of $M$, $$\lambda: H_n(M)\times H_{m-n}(M) \to \Z; \quad (x,y) \mapsto \lambda(x,y),$$
+
Let $M$ be an oriented $m$-dimensional manifold.
is defined analogously to the case $m=2n$, when it is called the [[Intersection_form|intersection form]].
+
We use the [[Intersection_form#Definition|''homology intersection pairing (or product)'']] of $M$,
Besides generalizing that simple direct definition, we can use the concept of the ''cup product'' and define the pairing by
+
$$I_M=\lambda_M=\lambda: H_n(M)\times H_{m-n}(M) \to \Z; \quad (x,y) \mapsto \lambda(x,y).$$
$$\lambda(x,y) = \langle x^*\cup y^*,[M]\rangle \in \Z,$$
+
where $x^*\in H^{m-n}(M)$, $y^*\in H^n(M)$ are the [[Poincaré duality|Poincaré duals]] of $x$, $y$ and $[M]$ is the [[fundamental class]].
+
+
The homology intersection pairing is bilinear and satisfies
+
$$\lambda(y,x) = (-1)^{n(m-n)}\lambda(x,y)$$
+
for all $x\in H_n(M)$, $y\in H_{m-n}(M)$.
+
These properties are easy to check using the simple direct definition; they also follow from simple properties of the cup product.
+
+
The '''algebraic intersection number''' $\lambda^{\mathrm{alg}}(f_1,f_2)\in\Z$ of immersions of oriented manifolds $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ in a connected oriented manifold, is the homology intersection of the homology classes $(f_1)_*[N_1]\in H_{n_1}(M)$, $(f_2)_*[N_2]\in H_{n_2}(M)$:
The '''algebraic intersection number''' $\lambda^{\mathrm{alg}}(f_1,f_2)\in\Z$ of immersions of oriented manifolds $f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}$, $f_2:N_2^{n_2} \looparrowright M^{n_1+n_2}$ in a connected oriented manifold, is the homology intersection of the homology classes $(f_1)_*[N_1]\in H_{n_1}(M)$, $(f_2)_*[N_2]\in H_{n_2}(M)$:
$$\lambda^{\mathrm{alg}}(N_1,N_2) := \lambda((f_1)_*[N_1],(f_2)_*[N_2]).$$
$$\lambda^{\mathrm{alg}}(N_1,N_2) := \lambda((f_1)_*[N_1],(f_2)_*[N_2]).$$

Revision as of 13:47, 29 March 2019

This page has not been refereed. The information given here might be incomplete or provisional.

Contents

1 Introduction

This page is based on [Ranicki2002]. Let f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} be immersions of oriented manifolds in a connected oriented manifold. The intersection number \lambda([N_1],[N_2])\in\Z has both an algebraic and geometric formulation; roughly speaking it counts with sign the number of intersection points that the two immersions have. The intersection number is an obstruction to perturbing the immersions into being disjoint. When it vanishes this perturbation can often be achieved using the Whitney trick. The intersection number of immersions is closely related to the intersection form of a manifold (and so to the signature of a 4k-dimensional manifold) and to characteristic classes. These are important invariants used in the classification of manifolds.

2 Definition

Let M be an oriented m-dimensional manifold. We use the homology intersection pairing (or product) of M,

\displaystyle I_M=\lambda_M=\lambda: H_n(M)\times H_{m-n}(M) \to \Z; \quad (x,y) \mapsto \lambda(x,y).

The algebraic intersection number \lambda^{\mathrm{alg}}(f_1,f_2)\in\Z of immersions of oriented manifolds f_1:N_1^{n_1} \looparrowright M^{n_1+n_2}, f_2:N_2^{n_2} \looparrowright M^{n_1+n_2} in a connected oriented manifold, is the homology intersection of the homology classes (f_1)_*[N_1]\in H_{n_1}(M), (f_2)_*[N_2]\in H_{n_2}(M):

\displaystyle \lambda^{\mathrm{alg}}(N_1,N_2) := \lambda((f_1)_*[N_1],(f_2)_*[N_2]).

3 Alternative description

The double point set of maps f_i:N_i\to M (i=1,2) is defined by

\displaystyle S_2(f_1,f_2) = \{(x_1,x_2)\in N_1\times N_2 | f_1(x_1) = f_2(x_2)\in M\} = (f_1\times f_2)^{-1}(\Delta(M))

with \Delta(M) = \{(x,x) | x\in M\}\subset M\times M the diagonal subspace.

A double point x=(x_1,x_2)\in S_2(f_1,f_2) of immersions f_i:N_i^{n_i} \looparrowright M^{n_1+n_2} (i=1,2) is transverse if the linear map
\displaystyle df(x) = (df_1(x_1),df_2(x_2)): \tau_{N_1}(x_1)\oplus \tau_{N_2}(x_2) \to \tau_M(f(x))
is an isomorphism.

Immersions f_i:N_i^{n_i} \looparrowright M^{n_1+n_2} (i=1,2) have transverse intersections (or are transverse) if each double point is transverse and S_2(f_1,f_2) is finite.

The index I(x)\in\Z of a transverse double point x=(x_1,x_2)\in S_2(f_1,f_2) is
\displaystyle I(x) = \left\{ \begin{array}{cc} +1, & \mathrm{if}\; df(x)\; \mathrm{preserves}\; \mathrm{orientations}\\ -1, & \mathrm{otherwise}.\end{array}\right.

The geometric intersection number of transverse immersions f_i:N_i^{n_i} \looparrowright M^{n_1+n_2} (i=1,2) is

\displaystyle \lambda^{\mathrm{geo}}(N_1,N_2) = \sum_{x\in S_2(f_1,f_2)}{I(x)}\in \Z.

4 Equivalence of definitions

The algebraic and geometric intersection numbers agree,

\displaystyle \lambda^{\mathrm{alg}}(N_1,N_2)=\lambda^{\mathrm{geo}}(N_1,N_2).

For a proof of this clasical fact see [Scorpan2005, Section 3.2] or [Ranicki2002, Proposition 7.22].

5 References

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox