Lemma. We have
\[s_{i+j-1}[H_{ij}] = \begin{cases}
 j, & \text{if } i = 0, \text{ i.e. } H_{ij} = \mathbb{C}P^{j-1}; \\
 2, & \text{if } i = j = 1; \\
 0, & \text{if } i = 1, j > 1; \\
 -(i+j), & \text{if } i > 1.
\end{cases} \]

Proof. Let \(i = 0 \). Since the stably complex structure on \(H_{0j} = \mathbb{C}P^{j-1} \) is determined by the isomorphism \(T(\mathbb{C}P^{j-1}) \oplus \mathbb{C} \cong \bar{\eta} \oplus \ldots \oplus \bar{\eta} \) (j summands) and \(x = c_1(\bar{\eta}) \), we have
\[s_{j-1}[\mathbb{C}P^{j-1}] = jx^{j-1}(\mathbb{C}P^{j-1}) = j. \]

Now let \(i > 0 \). Then
\[s_{i+j-1}(T(\mathbb{C}P^i \times \mathbb{C}P^j)) = (i+1)x^{i+j-1} + (j + 1)y^{i+j-1} = \begin{cases}
 2x^j + (j+1)y^j, & \text{if } i = 1; \\
 0, & \text{if } i > 1.
\end{cases} \]

Denote by \(\nu \) the normal bundle of the embedding \(\iota: H_{ij} \to \mathbb{C}P^i \times \mathbb{C}P^j \). Then
\[T(H_{ij}) \oplus \nu = \iota^*(T(\mathbb{C}P^i \times \mathbb{C}P^j)). \]

Since \(c_1(\nu) = \iota^*(x + y) \), we obtain \(s_{i+j-1}(\nu) = \iota^*(x + y)^{i+j-1} \).

Assume \(i = 1 \). Then by the previous Proposition,
\[s_j[H_{1j}] = s_j(T(H_{1j})) = \iota^*(2x^j + (j+1)y^j - (x+y)^j)(H_{1j}) \]
\[= (2x^j + (j+1)y^j - (x+y)^j)(x+y)(\mathbb{C}P^1 \times \mathbb{C}P^j) \]
\[= \begin{cases}
 2, & \text{if } j = 1; \\
 0, & \text{if } j > 1.
\end{cases} \]

Assume now that \(i > 1 \). Then \(s_{i+j-1}(T(\mathbb{C}P^i \times \mathbb{C}P^j)) = 0 \), and by the previous Proposition,
\[s_{i+j-1}[H_{ij}] = -s_{i+j-1}(\nu)[H_{ij}] = -\iota^*(x + y)^{i+j-1}(H_{ij}) = -(x+y)^{i+j}(\mathbb{C}P^i \times \mathbb{C}P^j) = -\binom{i+j}{i}, \]
which finishes the proof of the Lemma. \(\square \)

Taras Panov
Department of Geometry and Topology
Faculty of Mathematics and Mechanics
Moscow State University, Leninskie Gory
119991 Moscow RUSSIA

E-mail address: tpanov@higeom.math.msu.su