1. MANIFOLD ATLAS : REGENSBURG SURGERY BLOCKSEMINAR 2012 SPIVAK NORMAL FIBRATIONS (OLIVER STRASER AND NENA RÖTTGEN)

Question. Let X be a topological space. When is X homotopy equivalent to a closed manifold?

Conditions: last talk: Poincaré complex, now: existence of a Spivak normal fibration

Definition 1.1 (Spherical fibration). $p: E \to X$ (k-1) spherical fibration $\Leftrightarrow p$ is a fibration such that $F = p^{-1}(x) \simeq S^{k-1}$ for

Example 1.2. $i: X \to \mathbb{R}^{n+k}, X$ closed manifold, $\nu(i): \nu(X) \to X$ normal bundle

 $p\coloneqq S\nu(i):S\nu(X)\coloneqq \{v\in\nu(X)\mid ||v||=1\} \text{ sphere bundle}$

 $Dp\coloneqq D\nu(i)\colon D\nu(X)\coloneqq \{v\in\nu(X)\mid ||v||\leq 1\}\quad \text{disk bundle}$

Notation. Let $p: E \to X$ be a spherical fibration. Then

 $D_p: DE \to X, DE = \operatorname{cyl}(p)$

is called the associated disk bundle. and

$$\mathrm{Th}(p) \coloneqq (DE/E, \infty)$$

its Thom space.

Orientation for p. $p: E \to X$ (k-1)-spherical fibration, X connected, $\gamma: I \to X, \gamma(0) = x_0, \gamma(1) = x_1$

1.0.1. Fiber transport.

 $\rightsquigarrow f_{\gamma} \coloneqq H(\cdot, 1) \colon p^{-1}(x_0) \to p^{-1}(x_1)$

Exercise 1.3. (1) The homotopy class of f_{γ} depends only on the homotopy class of γ

(2) $[\gamma] \mapsto [f_{\gamma}]$ is a homomorphism of monoids

Define: $t_x : \pi_1(X, x) \to [p^{-1}(x), p^{-1}(x)]$

Definition 1.4. • $w: \pi_1(X) \to \{\pm 1\}, w(\gamma) = \deg(t(\gamma))$, orientation homomorphism

- p is orientable $\Leftrightarrow w$ is trival.
- p orientable: An orientation of p is a choice $[p^{-1}(x)] \in H_{k-1}(p^{-1}(x))$ f.a. $x \in X$ such that for every path $\gamma : I \to X$ with $\gamma(i) = x_i, i = 0, 1$ holds $H_{k-1}(f_{\gamma})([p^{-1}(x_0)]) = [p^{-1}(x_1)]$

Theorem 1.5 (Thom isomorphism). X connected, finite CW-complex, $p: E \to X$ (k-1)-spherical fibration. Then there exists a group homomorphism $w: \pi_1(X) \to \{\pm 1\}$ and $U_p \in H^k(DE; E; \mathbb{Z}^w)$ such that

$$H_{i}(DE, E; \mathbb{Z}^{w/triv}) \xrightarrow{D_{p^{*}}(U_{p} \cap \cdot)} H_{i-k}(X; \mathbb{Z}^{triv/w})$$
$$H^{i}(X; \mathbb{Z}^{w/triv}) \xrightarrow{D_{p^{*}}(\cdot) \cup U_{p}} H^{i+k}(DE; E; triv/w)$$

are isomorphisms. U_p is called the Thom class of p.

Example 1.6. $i: X \to \mathbb{R}^{n+k}, X$ closed manifold, $\nu(i): \nu(X) \to X$ normal bundle

$$p \coloneqq S\nu(i) : S\nu(X) \coloneqq \{v \in \nu(X) \mid ||v|| = 1\} \text{ sphere bundle}$$
$$Dp \coloneqq D\nu(i) : D\nu(X) \coloneqq \{v \in \nu(X) \mid ||v|| \le 1\} \text{ disk bundle}$$
$$c \colon S_{n+k} = \mathbb{R}_{n+k} \cup \{\infty\} \to \operatorname{Th}(p) = D\nu(i)/S\nu(i)$$
$$\rightsquigarrow h(c) \in H_{n+k}(D\nu(i), S\nu(i))$$

where h is the Hurewicz homomorphism. $\Rightarrow [X] = Dp_*(U_p \cap h(c)).$

Definition 1.7. Let X be a finite connected n-dimensional Poincaré complex with fundamental class [X]. A Spivak normal fibration for X is a (k - 1)-spherical fibration, $p: E \to X$ and together with a collapse map $c: S^{n+k} \to \text{Th}(p)$ such that

- (1) the orientation homomorphisms of p and X coincide
- (2) $[X] = Dp_*(U_p \cap h(c))$

Definition 1.8. Let $E_i \to X_i$ be fibrations, a fiber map (\overline{f}, f) is a commutative diagram

Similar we define a fiber homotopy. A fiber homotopy (\overline{f}_t, f_t) is called strong if f_t is constant with respect to t.

If $E_i \to X$ are spherical fibrations, then the *join* of E_1 and E_2 is defined by

$$E_1 * E_2 = I \times (E_1 \times_X E_2) / (e_1, e_2, 0) \sim (e_1', e_2, 0), (e_1, e_2, 1) \sim (e_1, e_2', 1)$$

Let $\underline{S}_k \coloneqq S^k \times X \to X$, $\sum^k (E) = (\underline{S}^{k-1} * E)$

Theorem 1.9. Let X be a finite, connected, n-dimensional Poincaré complex.

- (1) If k > n then there exists a (k-1) Spivak normal fibration
- (2) $p_i: E_i \to X$ are (k_{i-1}) Spivak normal fibration over X with collapse map $c_i: S^{n+k_i} \to \operatorname{Th}(p_i)$ for $k \ge k_1, k_2$ exist a fiber map unique up to strong fiber homotopy equivalence

$$\overline{f} \colon \sum^{k-k_1} p_1 \to \sum^{k-k_2} p_2$$

such that
$$\pi_{1(\overline{f})=}([\sum^{k-k_1}[c_1]]) = [\sum^{k-k_2} c_2]$$

Idea of the proof of (1) in the case w = 0. Fact: There exists an embedding $X \to N \subseteq \mathbb{R}^{n+k}$ (k > n), N regular NHD, s.t.

- (1) $(N, \partial N)$ is compact, oriented n + k dimensional manifold with boundary.
- (2) Let $j : \partial N \to N$ be the canonical inclusion, then $\pi_1(j)$ is an isomorphism and $\pi_2(N, \partial N) = 0$
- (3) X is a strong deformation retract of $N \Rightarrow i \colon X \to N$ is a homotopy equivalence.

The proof will be devided into two steps.

Step 1: construct a Thom class

Step 2: $\partial N \to X$ is made into a fibration

Choose a homotopy inverse i^{-1} of i and $[N, \partial N] \in H_{n+k}(N, \partial N)$ a generator, then for any $u \in H^k(N, \partial N)$ we have a commutative diagram

There exists exactly one $u \in H^k(N\partial N)$ such that $(i^{-1})^*(u \cap [N, \partial N]) = [X]$. Hence by the diagram above $a \mapsto u \cup (i^{-1})^*a$ is an isomorphism. We fix this u. Every map can be decomposed as follows

such that p_f is a fibration and i_f is a homotopy equivalence. Next we want to extend i_f to a homotopy equivalence of pairs $I_f : (N(\partial N)) \to (DE_f, E_f)$ as follows. j is a cofibration \Rightarrow by the homotopy extension property

there exists $\widetilde{I_f}$. Set $I_f := \widetilde{I_f(1, 1)}$. By definition I_f is homotoic to i^{-1} which is a homotopy equivalence (since $DE_f \simeq X$). So I_f is the desired extension of i_f . We take now the u fixed before to construct our Thom class u_f as follows:

$$u_f := (I_f^*)^{-1}(u) \in H^k(DE_j, E_j)$$

then

$$H(X) \to H(DE_i) \stackrel{\cup u_f}{\to} H(DE_i, E_i)$$

is an isomorphism. This looks like the Thom isomorphism. In fact one case use the Leray Serre Spectral Sequence to show, that the fiber of the fibration $p_f: E_f \to X$ has to be a homology k-1 sphere. Moreover it is not hard to check that the fiber has to be simply connected and so by a theorem of Whitehead p_f is spherical. Finally let $c: S^{n+k} \to N/\partial N$ be the collapse map introduced before. In the exercises we will show that

$$h(c) = \pm [N, \partial N]$$

If we take $c' := I_f \circ c$ then it is straight foreward to check that

$$(Dp_f)(u_f \cap h(c')) = [X]$$

this was to show.

Lemma 1.10. $p_i: E_i \to X_i$ spherical fibrations. X_i Poincaré complex, $(\overline{f}, f): p_1 \to p_2$ which is a homotopy equivalence on each fiber

(1) $w_2 \circ \operatorname{Th}(f) = w_1$ (Exercise)

- (2) Let $c_1: S^{n+k} \to \operatorname{Th}(p_2)$ be a pointed map. $c_2 = \operatorname{Th}(\overline{f})$ then deg $f = \pm 1 \Rightarrow (p_1, c_1)SNF \Leftrightarrow (p_2(c_2))SNF$
- (3) path p_i are Spivak normal fibrations $\Rightarrow \deg f = \pm 1$

Here by deg $f = \pm 1$ we mean just mean $f_*[X_1] = \pm [X_2]$. Note that f_* is defined in the twisted case only up to a sign.

4