Proposition 3.1. The following relation holds in $U^{2}(X)$ :

$$
\begin{equation*}
u+_{H} v=F_{U}(u, v)=u+v+\sum_{k \geq 1, l \geq 1} \alpha_{k l} u^{k} v^{l} \tag{1}
\end{equation*}
$$

where the coefficients $\alpha_{k l} \in \Omega_{U}^{-2(k+l-1)}$ do not depend on $X$. The series $F_{U}(u, v)$ given by (1) is a formal group law over the ring $\Omega_{U}=\Omega_{U}^{*}$.
Proof. We first do calculations with the universal example $X=\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$. Then

$$
U^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)=\Omega_{U}^{*}[[\underline{u}, \underline{v}]]
$$

where $\underline{u}, \underline{v}$ are canonical geometric cobordisms given by the projections of $\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ onto its factors. We therefore have the following relation in $U^{2}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)$ :

$$
\begin{equation*}
\underline{u}+_{H} \underline{v}=\sum_{k, l \geq 0} \alpha_{k l} \underline{u}^{k} \underline{v}^{l} \tag{2}
\end{equation*}
$$

where $\alpha_{k l} \in \Omega_{U}^{-2(k+l-1)}$.
Now let the geometric cobordisms $u, v \in U^{2}(X)$ be given by maps $f_{u}, f_{v}: X \rightarrow \mathbb{C} P^{\infty}$ respectively. Then $u=$ $\left(f_{u} \times f_{v}\right)^{*}(\underline{u}), v=\left(f_{u} \times f_{v}\right)^{*}(\underline{v})$ and $u+_{H} v=\left(f_{u} \times f_{v}\right)^{*}\left(\underline{u}+_{H} \underline{v}\right)$, where $f_{u} \times f_{v}: X \rightarrow \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$. Applying the $\Omega_{U}^{*}$-module map $\left(f_{u} \times f_{v}\right)^{*}$ to (2) we obtain the required formula (1). The fact that $F_{U}(u, v)$ is a formal group law follows directly from the properties of the group multiplication $\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty}$.

Theorem 3.2 (Buchstaber).

$$
F_{U}(u, v)=\frac{\sum_{i, j \geq 0}\left[H_{i j}\right] u^{i} v^{j}}{\left(\sum_{r \geq 0}\left[\mathbb{C} P^{r}\right] u^{r}\right)\left(\sum_{s \geq 0}\left[\mathbb{C} P^{s}\right] v^{s}\right)}
$$

where $H_{i j}(0 \leq i \leq j)$ are Milnor hypersurfaces and $H_{j i}=H_{i j}$.
Proof. Set $X=\mathbb{C} P^{i} \times \mathbb{C} P^{j}$ in Proposition 3.1. Consider the Poincaré-Atiyah duality map $D: U^{2}\left(\mathbb{C} P^{i} \times \mathbb{C} P^{j}\right) \rightarrow$ $U_{2(i+j)-2}\left(\mathbb{C} P^{i} \times \mathbb{C} P^{j}\right)$ and the map $\varepsilon: U_{*}\left(\mathbb{C} P^{i} \times \mathbb{C} P^{j}\right) \rightarrow U_{*}(p t)=\Omega_{*}^{U}$ induced by the projection $\mathbb{C} P^{i} \times \mathbb{C} P^{j} \rightarrow p t$. Then the composition

$$
\varepsilon D: U^{2}\left(\mathbb{C} P^{i} \times \mathbb{C} P^{j}\right) \rightarrow \Omega_{2(i+j)-2}^{U}
$$

takes geometric cobordisms to the bordism classes of the corresponding submanifolds. In particular, $\varepsilon D\left(u+_{H} v\right)=\left[H_{i j}\right]$, $\varepsilon D\left(u^{k} v^{l}\right)=\left[\mathbb{C} P^{i-k}\right]\left[\mathbb{C} P^{j-l}\right]$. Applying $\varepsilon D$ to (1) we obtain

$$
\left[H_{i j}\right]=\sum_{k, l} \alpha_{k l}\left[\mathbb{C} P^{i-k}\right]\left[\mathbb{C} P^{j-l}\right]
$$

Therefore,

$$
\sum_{i, j}\left[H_{i j}\right] u^{i} v^{j}=\left(\sum_{k, l} \alpha_{k l} u^{k} v^{l}\right)\left(\sum_{i \geq k}\left[\mathbb{C} P^{i-k}\right] u^{i-k}\right)\left(\sum_{j \geq l}\left[\mathbb{C} P^{j-l}\right] v^{j-l}\right)
$$

which implies the required formula.
Theorem 3.3 (Mishchenko). The logarithm of the formal group law of geometric cobordisms is given by

$$
g_{U}(u)=u+\sum_{k \geq 1} \frac{\left[\mathbb{C} P^{k}\right]}{k+1} u^{k+1} \in \Omega_{U} \otimes \mathbb{Q}[[u]] .
$$

Proof. We have

$$
d g_{U}(u)=\frac{d u}{\left.\frac{\partial F_{U}(u, v)}{\partial v}\right|_{v=0}}
$$

Using the formula of Theorem 3.2 and the identity $H_{i 0}=\mathbb{C} P^{i-1}$, we calculate

$$
d g_{U}(u)=\frac{1+\sum_{k>0}\left[\mathbb{C} P^{k}\right] u^{k}}{1+\sum_{i>0}\left(\left[H_{i 1}\right]-\left[\mathbb{C} P^{1}\right]\left[\mathbb{C} P^{i-1}\right]\right) u^{i}}
$$

A calculation of Chern numbers shows that $\left[H_{i 1}\right]=\left[\mathbb{C} P^{1}\right]\left[\mathbb{C} P^{i-1}\right]$. Therefore, $d g_{U}(u)=1+\sum_{k>0}\left[\mathbb{C} P^{k}\right] u^{k}$, which implies the required formula.

Theorem 3.4 (Quillen). The formal group law $F_{U}$ of geometric cobordisms is universal.
Proof. Let $\mathcal{F}$ be the universal formal group law over a ring $A$. Then there is a homomorphism $r: A \rightarrow \Omega_{U}$ which takes $\mathcal{F}$ to $F_{U}$. The series $\mathcal{F}$, viewed as a formal group law over the ring $A \otimes \mathbb{Q}$, has the universality properties for all formal group laws over $\mathbb{Q}$-algebras. Such a formal group law is determined by its logarithm, which is a series with leading term $u$. It follows that if we write the logarithm of $\mathcal{F}$ as $\sum b_{k} \frac{u^{k+1}}{k+1}$ then the ring $A \otimes \mathbb{Q}$ is the polynomial ring $\mathbb{Q}\left[b_{1}, b_{2}, \ldots\right]$. By Theorem 3.3, $r\left(b_{k}\right)=\left[\mathbb{C} P^{k}\right] \in \Omega_{U}$. Since $\Omega_{U} \otimes \mathbb{Q} \cong \mathbb{Q}\left[\left[\mathbb{C} P^{1}\right],\left[\mathbb{C} P^{2}\right], \ldots\right]$, this implies that $r \otimes \mathbb{Q}$ is an isomorphism.

By the Lazard Theorem the ring $A$ does not have torsion, so $r$ is a monomorphism. On the other hand, Theorem 3.2 implies that the image $r(A)$ contains the bordism classes $\left[H_{i j}\right] \in \Omega_{U}, 0 \leq i \leq j$. Since these classes generate the whole ring $\Omega_{U}$, the map $r$ is onto and thus an isomorphism.

