Proposition 3.1 The following relation holds in $U^2(X)$:

(1)
$$u +_{H} v = F_{U}(u, v) = u + v + \sum_{k \ge 1, l \ge 1} \alpha_{kl} u^{k} v^{l},$$

where the coefficients $\alpha_{kl} \in \Omega_U^{-2(k+l-1)}$ do not depend on X. The series $F_U(u,v)$ given by (1) is a formal group law over the ring $\Omega_U = \Omega_U^*$.

Proof. We first do calculations with the universal example $X = \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$. Then

$$U^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = \Omega_U^*[[\underline{u}, \underline{v}]],$$

where $\underline{u},\underline{v}$ are canonical geometric cobordisms given by the projections of $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$ onto its factors. We therefore have the following relation in $U^2(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty})$:

(2)
$$\underline{u} +_{H} \underline{v} = \sum_{k,l>0} \alpha_{kl} \, \underline{u}^{k} \underline{v}^{l},$$

where $\alpha_{kl} \in \Omega_U^{-2(k+l-1)}$.

Now let the geometric cobordisms $u, v \in U^2(X)$ be given by maps $f_u, f_v \colon X \to \mathbb{C}P^{\infty}$ respectively. Then $u = (f_u \times f_v)^*(\underline{u}), v = (f_u \times f_v)^*(\underline{v})$ and $u +_H v = (f_u \times f_v)^*(\underline{u} +_H \underline{v})$, where $f_u \times f_v \colon X \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$. Applying the Ω_U^* -module map $(f_u \times f_v)^*$ to (2) we obtain the required formula (1). The fact that $F_U(u, v)$ is a formal group law follows directly from the properties of the group multiplication $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$.

Theorem 3.2 (Buchstaber)

$$F_U(u,v) = \frac{\sum_{i,j\geq 0} [H_{ij}] u^i v^j}{\left(\sum_{r\geq 0} [\mathbb{C}P^r] u^r\right) \left(\sum_{s\geq 0} [\mathbb{C}P^s] v^s\right)},$$

where H_{ij} (0 \le i \le j) are Milnor hypersurfaces and $H_{ji} = H_{ij}$.

Proof. Set $X = \mathbb{C}P^i \times \mathbb{C}P^j$ in Proposition 3.1. Consider the Poincaré-Atiyah duality map $D \colon U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to U_{2(i+j)-2}(\mathbb{C}P^i \times \mathbb{C}P^j)$ and the map $\varepsilon \colon U_*(\mathbb{C}P^i \times \mathbb{C}P^j) \to U_*(pt) = \Omega^U_*$ induced by the projection $\mathbb{C}P^i \times \mathbb{C}P^j \to pt$. Then the composition

$$\varepsilon D \colon U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to \Omega^U_{2(i+j)-2}$$

takes geometric cobordisms to the bordism classes of the corresponding submanifolds. In particular, $\varepsilon D(u+u) = [H_{ij}]$, $\varepsilon D(u^k v^l) = [\mathbb{C}P^{i-k}][\mathbb{C}P^{j-l}]$. Applying εD to (1) we obtain

$$[H_{ij}] = \sum_{k,l} \alpha_{kl} [\mathbb{C}P^{i-k}] [\mathbb{C}P^{j-l}].$$

Therefore,

$$\sum_{i,j} [H_{ij}] u^i v^j = \Bigl(\sum_{k,\,l} \alpha_{kl} u^k v^l\Bigr) \Bigl(\sum_{i \geq k} [\mathbb{C} P^{i-k}] u^{i-k}\Bigr) \Bigl(\sum_{j \geq l} [\mathbb{C} P^{j-l}] v^{j-l}\Bigr),$$

which implies the required formula.

Theorem 3.3 (Mishchenko). The logarithm of the formal group law of geometric cobordisms is given by

$$g_U(u) = u + \sum_{k>1} \frac{[\mathbb{C}P^k]}{k+1} u^{k+1} \in \Omega_U \otimes \mathbb{Q}[[u]].$$

Proof. We have

$$dg_U(u) = \frac{du}{\frac{\partial F_U(u,v)}{\partial v}\Big|_{v=0}}.$$

Using the formula of Theorem 3.2 and the identity $H_{i0} = \mathbb{C}P^{i-1}$, we calculate

$$dg_U(u) = \frac{1 + \sum_{k>0} [\mathbb{C}P^k] u^k}{1 + \sum_{i>0} ([H_{i1}] - [\mathbb{C}P^1][\mathbb{C}P^{i-1}]) u^i}.$$

A calculation of Chern numbers shows that $[H_{i1}] = [\mathbb{C}P^1][\mathbb{C}P^{i-1}]$. Therefore, $dg_U(u) = 1 + \sum_{k>0} [\mathbb{C}P^k]u^k$, which implies the required formula.

Theorem 3.4 (Quillen). The formal group law F_U of geometric cobordisms is universal.

Proof. Let \mathcal{F} be the universal formal group law over a ring A. Then there is a homomorphism $r\colon A\to\Omega_U$ which takes \mathcal{F} to F_U . The series \mathcal{F} , viewed as a formal group law over the ring $A\otimes\mathbb{Q}$, has the universality properties for all formal group laws over \mathbb{Q} -algebras. Such a formal group law is determined by its logarithm, which is a series with leading term u. It follows that if we write the logarithm of \mathcal{F} as $\sum b_k \frac{u^{k+1}}{k+1}$ then the ring $A\otimes\mathbb{Q}$ is the polynomial ring $\mathbb{Q}[b_1,b_2,\ldots]$. By Theorem 3.3, $r(b_k)=[\mathbb{C}P^k]\in\Omega_U$. Since $\Omega_U\otimes\mathbb{Q}\cong\mathbb{Q}[[\mathbb{C}P^1],[\mathbb{C}P^2],\ldots]$, this implies that $r\otimes\mathbb{Q}$ is an isomorphism.

By the Lazard Theorem the ring A does not have torsion, so r is a monomorphism. On the other hand, Theorem 3.2 implies that the image r(A) contains the bordism classes $[H_{ij}] \in \Omega_U$, $0 \le i \le j$. Since these classes generate the whole ring Ω_U , the map r is onto and thus an isomorphism.