Lecture 2 - Normal maps and surgery below the middle dimension

Spiros Adams-Florou

Westfälische Wilhelms-Universität Münster

26th August, 2013

The surgery Programme

Notation

Manifolds are understood to be smooth compact and closed unless stated otherwise. M^{m} denotes M is m-dimensional.

Remark

Unknown in general if $\pi_{1}(M) \cong \pi_{1}\left(M^{\prime}\right) \Rightarrow$ unknown in general if $M \cong M^{\prime}$.

The surgery programme attempts to answer

(A) : Given $f: M^{m} \xrightarrow{\sim}\left(M^{\prime}\right)^{m}$, is $f \sim$ diffeomorphism?
(B) : Given X with m-dimensional Poincaré duality, is X homotopy equivalent to an m-dimensional manifold?
(A) is relative (B).

Definition

An m-dimensional geometric Poincaré complex (m - gPc) is a finite $C W$-complex X with an orientation character $\omega \in H^{1}\left(X ; \mathbb{Z}_{2}\right)$ and ω-twisted fundamental class $[X] \in H_{m}\left(X ; \mathbb{Z}^{\omega}\right)$ s.t.

$$
[X] \cap-: H^{*}(\widetilde{X}) \rightarrow H_{m-*}(\widetilde{X})
$$

are $\mathbb{Z}\left[\pi_{1}(X)\right]$-module isomorphisms.

Definition

Let X be an $m-g P c$.
(i) A manifold structure (M, f) on X is an m-dimensional manifold M together with a homotopy equivalence $f: M \rightarrow X$.
(ii) The manifold structure set $\mathcal{S}(X)$ of X is the set of equivalence classes of manifold structures (M, f) where $(M, f) \sim\left(M^{\prime}, f^{\prime}\right)$ if there exists a bordism $\left(F, f, f^{\prime}\right):\left(W, M, M^{\prime}\right) \rightarrow X \times(I,\{0\},\{1\})$ with F a homotopy equivalence so that $\left(W, M, M^{\prime}\right)$ is an h-cobordism.

Thus we are asking

Let X be an $m-g P c$, $\left(A^{\prime}\right)$: Given $(M, f),\left(M^{\prime}, f^{\prime}\right) \in \mathcal{S}(X)$, does $(M, f) \sim\left(M^{\prime}, f^{\prime}\right)$?
$\left(B^{\prime}\right)$: Is $\mathcal{S}(X)$ non-empty?

Definition

(i) Let X be a connected $m-g \mathrm{gc}$ with a k-dimensional vector bundle $\xi: E \rightarrow X$. A normal k-map (M, i, f, \bar{f}) consists of a closed m-dimensional manifold M together with an embedding $i: M \rightarrow \mathbb{R}^{m+k}$ and a bundle map $\bar{f}: \nu_{M}=\nu(i) \rightarrow \xi$ that is a fibrewise isomorphism covering a map $f: M \rightarrow X$, I.e. $\nu_{M} \cong f^{*}(\xi)$. Shorten this to $(\bar{f}, f): M^{m} \rightarrow X$.
(ii) We call a normal k-map (\bar{f}, f) a degree one normal k-map if f has degree one, i.e. $f_{*}[M]=[X] \in H_{m}(X)$.
(iii) A normal bordism is a normal k-map from a cobordism:

$$
\left((\bar{F}, F),(\bar{f}, f),\left(\bar{f}^{\prime}, f^{\prime}\right)\right):\left(W, M, M^{\prime}\right) \rightarrow X \times(I,\{0\},\{1\})
$$

Normal bundles vs Tangent bundles

Normal data

$$
\nu_{M} \cong f^{*} \xi
$$

$\underline{\text { Tangential data }}$

$T M \oplus \underline{\mathbb{R}}^{a} \cong f^{*} \xi^{-1}$.

Remark

For X an m-gPc, $\mathcal{S}(X)$ non-empty only if there exists a degree one normal map (d1 nm) with target X.

Proof.

Given $f: M \xrightarrow{\sim} X$, choose a homotopy inverse f^{-1} and $h: \operatorname{id}_{M} \simeq f^{-1} \circ f$. Lift $h: M \times I \rightarrow M$ to a bundle map
$\bar{h}: \nu_{M \times I}=\nu_{M} \times I \rightarrow \nu_{M}$ s.t. $\left.\bar{h}\right|_{\nu_{M} \times\{0\}}=\operatorname{id}_{\nu_{M}} .\left.\bar{h}\right|_{\nu_{M} \times\{1\}}: \nu_{M} \rightarrow \nu_{M}$ covers $f^{-1} \circ f: M \rightarrow M$ and so induces a bundle map $\bar{f}: \nu_{M} \rightarrow\left(f^{-1}\right)^{*} \nu_{M}$ covering $f: M \rightarrow X$. Clearly $f^{*}\left(f^{-1}\right)^{*} \nu_{M} \cong \nu_{M}$.

Remark

We need normal maps!

The surgery method

The surgery method proceeds via a two stage obstruction theory:
(B1): Does an m-gPC X admit a degree one normal map $(\bar{f}, f): M \rightarrow X$?
(B2): If so, is there a d1nm that is bordant to a homotopy equivalence $\left(\bar{f}^{\prime}, f^{\prime}\right): M^{\prime} \xrightarrow{\sim} X$?
Or for the relative problem
(A1): Are homotopy equivalent m-dimensional manifolds M, M^{\prime} normally cobordant?
(A2): If so, are they h-cobordant?

Remark

There is a version for non-simply connected spaces taking Whitehead torsion into account - more on this later.

First obstruction

We concentrate on question ($B 2$) but briefly answer ($B 1$).

Recall

Let $O(k)$ be the orthogonal group.

$$
O:=\lim _{k \rightarrow \infty} O(k)
$$

BO is the classifying space for vector bundles where

$$
B O:=\lim _{k \rightarrow \infty} B O(k)
$$

for $B O(k)=G_{k}\left(\mathbb{R}^{\infty}\right)$ the Grassmannian of k-planes in \mathbb{R}^{∞}.

Definition

- Let $G(k)$ denote the monoid of self-homotopy equivalences of S^{k-1}.

$$
G:=\lim _{k \rightarrow \infty} G(k)
$$

$B G$ classifies spherical fibrations.

- There are maps

$$
\begin{array}{r}
J_{k}: O(k) \rightarrow G(k) \\
B J_{k}: B O(k) \rightarrow B G(k)
\end{array}
$$

so taking colimits we get maps $J: O \rightarrow G$ and $B J: B O \rightarrow B G$.

- Let G / O denote the mapping fibre of $B J: B O \rightarrow B G$ so that there is a fibration (up to homotopy)

$$
G / O \rightarrow B O \rightarrow B G
$$

and hence a long exact sequence in homotopy groups.

- All manifolds M^{m} have a (stable) normal vector bundle $\nu_{M}: M \rightarrow B O$,
- All m-gPc's X have a Spivak normal spherical fibration (SNF) $\nu_{X}: X \rightarrow B G$,
- An m-gPc admits a degree one normal map if and only if its SNF has a vector bundle reduction, i.e. $\nu_{X}: X \rightarrow B G$ lifts to a map to $B O$, if and only if $t\left(\nu_{X}\right) \simeq *$ for

Strategy

- Start with a degree one normal map $(\bar{f}, f): M \rightarrow X$,
- By Whitehead's theorem, f is a homotopy equivalence if and only if $\pi_{*}(f)=0$,
- We show that $H_{i+1}(\widetilde{f})$ have Poincaré duality,
- Thus if $\pi_{i+1}(f)$ vanish up to and including the middle dimension then f is a homotopy equivalence,
- Inductively seek to kill $\pi_{i+1}(f)$ by surgery,
- Surgery gives a normal bordism to a new normal map $\left(\bar{f}^{\prime}, f^{\prime}\right)$ with (hopefully) that homotopy group killed,
- Thus if we can do surgery to kill $\pi_{i+1}(f)$ up to and including the middle dimension we get a normal bordism to a homotopy equivalence.

Definition

An n-surgery ($n \geq-1$) on an m-dimensional manifold M is the procedure of constructing a new manifold

$$
M^{\prime}:=\overline{M \backslash S^{n} \times D^{m-n}} \cup_{S^{n} \times S^{m-n-1}} D^{n+1} \times S^{m-n-1}
$$

by cutting out an embedded $S^{n} \times D^{m-n} \subset M$ and replacing it by $D^{n+1} \times S^{m-n-1}$. (N.b. $S^{-1}:=\emptyset$.)

Remark

- Poincaré duality is preserved: the effect of surgery, M^{\prime}, is also a (smooth) manifold.
- Homotopically an n-surgery kills the class of $S^{n} \times D^{m-n} \in \pi_{n}(M)$ but also creates the (dual) class of $D^{n+1} \times S^{m-n-1} \in \pi_{m-n-1}\left(M^{\prime}\right)$.
- An n-surgery gives a (smooth) cobordism (W, M, M^{\prime}) called the trace of the surgery. W is obtained by attaching an
$(n+1)$-handle, $D^{n+1} \times D^{m-n}$, to $M \times I$ at
$S^{n} \times D^{m-n} \times\{1\} \subset M \times\{1\}$.

Proposition

Two smooth m-dimensional manifolds M, M^{\prime} are cobordant if and only if M^{\prime} can be obtained from M by a finite sequence of surgeries.

Figure: Our example

Figure: General picture

Remark

For an element $x \in \pi_{n}(M)$, we can do surgery to kill x if and only if x may be represented by a framed embedding $\bar{g}: S^{n} \times D^{m-n} \hookrightarrow M$ if and only if we can represent x by an embedding $g: S^{n} \hookrightarrow M$ with trivial normal bundle.

Definition

Recall, the relative homotopy groups $\pi_{n+1}(f)(n \geqslant 0)$ of a pointed map $f: M \rightarrow X$ are designed to fit into a long exact sequence

$$
\cdots \longrightarrow \pi_{n+1}(M) \xrightarrow{f_{*}} \pi_{n+1}(X) \longrightarrow \pi_{n+1}(f) \longrightarrow \pi_{n}(M) \longrightarrow \cdots
$$

$x \in \pi_{n+1}(f)$ represented by homotopy classes of commuting diagrams

$$
\left.\right|_{D^{n+1}} ^{\left.S^{n} \xrightarrow{g} \xrightarrow{n}\right|_{t}}
$$

with $g: S^{n} \rightarrow M, h: D^{n+1} \rightarrow X$ pointed maps.

Theorem (Whitney immersion theorem)

For $2 n \leqslant m$ every map $f: N^{n} \rightarrow M^{m}$ is homotopic to an immersion $N \rightarrow M$, and for $2 n+1 \leqslant m$ any two homotopic immersions are regular homotopic (homotopic through immersions).

Theorem (Whitney embedding theorem)

(i) For $2 n+1 \leqslant m$ every map $N^{n} \rightarrow M^{m}$ is homotopic to an embedding $N \hookrightarrow M$, and for $2 n+2 \leqslant m$ any two homotopic embeddings are isotopic (homotopic through embeddings).
(ii) For $n \geqslant 3$ and $\pi_{1}(M)=\{1\}$ every map $f: N^{n} \rightarrow M^{2 n}$ is homotopic to an embedding $N \hookrightarrow M$.

Corollary

Below the middle dimension, $2 n+1 \leqslant m$, all $x \in \pi_{n+1}\left(f: M^{m} \rightarrow X\right)$ can be represented by embeddings. Can we frame?

Proposition

Let $2 n \leqslant m$ and let $x \in \pi_{n+1}\left(f: M^{m} \rightarrow X\right)$ be represented

with g an immersion. We may extend this to a framed immersion.

for $2 n+1 \leq m$.

- The normal data contained in a normal map $(\bar{f}, f): M^{n} \rightarrow X$ forces the pullback $g^{*} \nu_{M}$ to be trivial:

$$
g^{*} \nu_{M} \cong g^{*} f^{*} \xi \cong j^{*} \mathbb{R}^{a}=\underline{\mathbb{R}}^{a}
$$

- $\nu(g) \oplus T S^{n} \cong g^{*} T M$ so

$$
\nu(g) \oplus T S^{n} \oplus \mathbb{R}^{a} \cong g^{*}\left(T M \oplus \nu_{M}\right) \cong \mathbb{R}^{b}
$$

- Since $T S^{n} \oplus \underline{\mathbb{R}} \cong \underline{\mathbb{R}}^{n+1}$ we get that $\nu(g)$ is stably trivial.
- $\nu(g)$ correponds to a map $S^{n} \rightarrow B O(m-n)$, i.e. an element of $\pi_{n}(B O(m-n))$. This element is sent to zero under the inclusion $B O(m-n) \rightarrow B O(m-n+(n+a))$.
- Fact: The pair $(B O(n+2), B O(n+1))$ is $(n+1)$-connected so $\pi_{n+1}(B O(n+1)) \cong \pi_{n+1}(B O(n+1+a))$ and hence $\nu(g)$ is trivial meaning we can frame the immersion.

Surgery on a normal map

Let $(\bar{f}, f): M^{m} \rightarrow X$ be a normal map and suppose $x \in \pi_{n+1}(f)$ is represented by a framed embedding

Define $f^{\prime}: M^{\prime} \rightarrow X$ by

$$
f^{\prime}=f|\cup h|: \overline{M \backslash S^{n} \times D^{m-n}} \cup D^{n+1} \times D^{m-n} \rightarrow X .
$$

f and f^{\prime} are bordant:

$$
F=f \times \mathrm{id}_{l} \cup h: W=M \times I \cup D^{n+1} \times D^{m-n} \rightarrow X \times I \cup X \times\{1\} .
$$

We can extend the normal data over the bordism:

- Cover $f \times \mathrm{id}$, with $\bar{f} \times \mathrm{id}_{l}$,
- Cover h : $D^{n+1} \times D^{m-n} \rightarrow X \times\{1\}$ with $\bar{h}: h^{*}(\xi)=\underline{\mathbb{R}}^{a} \rightarrow \xi$,
- Compatible since $g^{*}\left(\nu_{M}\right)$ trivial and $h=f$ on $S^{n} \times D^{m-n}$.

Surgery below the middle dimension

Corollary

We can embed and frame any homotopy class $x \in \pi_{n+1}(f)$ below the middle dimension for a normal map f, and surgery on the framed embedding gives a normal bordism to a new normal map.

Let $(\bar{f}, f): M^{m} \rightarrow X$ be a d1 nm .

- First kill off $\pi_{1}(f)$ with 0-surgeries.
- Next kill off $\pi_{2}(f)$ by construction of Kreck:
M compact, X finite so both have finitely presented π_{1} :

$$
\begin{array}{r}
\pi_{1}(X)=\left\langle y_{1}, \ldots, y_{k} \mid r_{1}, \ldots, r_{s}\right\rangle \\
\pi_{1}(M)=\left\langle a_{1}, \ldots, a_{j} \mid R_{1} \ldots, R_{r}\right\rangle
\end{array}
$$

Perform $k 0$-surgeries on M resulting in

$$
M^{\prime}=M \sharp{\underset{i=1}{k}}_{\neq 1}^{k}\left(S^{1} \times D^{m-1}\right)_{i} .
$$

Now

$$
\pi_{1}(M)=\left\langle a_{1}, \ldots, a_{j}, z_{1}, \ldots, z_{k} \mid R_{1} \ldots, R_{r}\right\rangle
$$

and we can choose the surgeries so that $\left(f^{\prime}\right)_{*}\left(z_{i}\right)=y_{i}$ e.g. by choosing the nullhomotopies $h: D^{1} \times D^{m-1}$ in X to map along the loop x_{i}. Consider $\left(f^{\prime}\right)_{*}\left(a_{i}\right)$. This is some word $w_{i}\left(y_{1}, \ldots, y_{k}\right) \in \pi_{1}(X)$. Hence

$$
a_{i}^{-1} w_{i}\left(z_{i}, \ldots, z_{k}\right) \quad \text { and } \quad r_{i}\left(z_{i}, \ldots, z_{k}\right)
$$

are both in $\operatorname{ker}\left(f^{\prime}\right)_{*}$.
We can do surgery on these loops resulting in $M^{\prime \prime}$. New π_{1} is old with these words added to relations. Can check this is now π_{1}-isomorphism.

Suppose that f is n-connected for $n \geqslant 1$ so that $\pi_{1}(M) \cong \pi_{1}(X)=: \pi$.

Definition

Let \widetilde{X} be the universal cover of X and $\widetilde{M}=f^{*}(\widetilde{X})$ the pullback cover with $\widetilde{f}: \widetilde{M} \rightarrow \widetilde{X}$ a π-equivariant lift. We define the kernel homology and cohomology $\mathbb{Z}[\pi]$-modules of $f: M \rightarrow X$ by

$$
K_{*}(M):=H_{*+1}(\widetilde{f}), \quad K^{*}(M):=H^{*+1}(\widetilde{f}) .
$$

Since f is n-connected the Hurewicz theorem tells us that

$$
\begin{aligned}
& K_{i}(M)=H_{i+1}(\widetilde{f}) \cong \pi_{i+1}(\widetilde{f})=0, \quad i<n \\
& K_{n}(M)=H_{n+1}(\widetilde{f}) \cong \pi_{n+1}(\widetilde{f})=\pi_{n+1}(f) .
\end{aligned}
$$

Definition

For maps of pairs $(M, \partial M) \rightarrow(X, \partial X)$ we have $K_{i}(M, \partial M)$ and $K^{i}(M, \partial M)$ defined to fit into corresponding long exact sequences of $\mathbb{Z}[\pi]$-modules.

Proposition

The homology and cohomology kernel modules are related by Poincaré duality isomorphisms:

$$
K^{*}(M) \cong K_{m-*}(M) .
$$

Proof.

The Poincaré duality isomophism of \widetilde{M} splits

$$
H^{n}(\widetilde{M})=K^{n}(M) \oplus H^{n}(\widetilde{X}) \rightarrow H_{m-n}(\widetilde{M})=K_{m-n}(M) \oplus H_{m-n}(\widetilde{X}) .
$$

Proposition

Suppose $(\bar{f}, f): M^{m} \rightarrow X$ is an n-connected (degree one) normal map. Then $K_{n}(M)$ is finitely generated as a $\mathbb{Z}[\pi]$-module (and in the case $m=2 n$ stably f.g. free).

Proposition

Let $(\bar{f}, f): M^{m} \rightarrow X$ be an m-dimensional normal k-map and let

$$
(\bar{F}, F):\left(W^{m+1}, M, M^{\prime}\right) \rightarrow X \times(I,\{0\},\{1\})
$$

be a normal bordism from the trace of an n-surgery on (\bar{f}, f) killing an element $x \in \pi_{n+1}(f)$, and let $M_{0}=\overline{M \backslash\left(S^{n} \times D^{m-n}\right)}$. The kernel $\mathbb{Z}[\pi]$-modules are such that

$$
\begin{aligned}
& K_{i}(W, M)=\left\{\begin{array}{cc}
\mathbb{Z}[\pi], & i=n+1 \\
0, & i \neq n+1,
\end{array}\right. \\
& K_{i}\left(W, M^{\prime}\right)=\left\{\begin{array}{cc}
\mathbb{Z}[\pi], & i=m-n \\
0, & i \neq m-n
\end{array}\right.
\end{aligned}
$$

with a commutative braid of exact sequences of $\mathbb{Z}[\pi]$-modules

where λ denotes the homology intersection form:

$$
\begin{aligned}
\lambda^{a l g}: K_{n}(M) \times K_{n}(M) & \rightarrow \mathbb{Z}[\pi] \\
(x, y) & \mapsto x^{*}(y)
\end{aligned}
$$

where $x^{*} \in K^{n}(M)$ is the Poincaré dual w.r.t. kernel module Poincaré duality.

Let $2 n+1<m$. Suppose $(\bar{f}, f): M^{m} \rightarrow X$ is an n-connected degree one normal map, and we do surgery on a framed embedding representing $x \in \pi_{n+1}(f)$. Interpreting the braid we see

so $K_{n-1}\left(M^{\prime}\right)=0$.

hence $K_{n}(M) \cong K_{n+1}\left(W, M \cup M^{\prime}\right)$ and

$$
\begin{aligned}
K_{n}\left(M^{\prime}\right) & \cong K_{n+1}\left(W, M \cup M^{\prime}\right) / \operatorname{Im}\left(\mathbb{Z}[\pi] \rightarrow K_{n}(M)\right) \\
& \cong K_{n}(M) /\langle x\rangle
\end{aligned}
$$

Thus the generator $x \in K_{n}(M)$ is killed off in $K_{n}\left(M^{\prime}\right)$.

Corollary

Let $m=2 n$ or $2 n+1$. Then any m-dimensional degree one normal $\operatorname{map}(\bar{f}, f): M \rightarrow X$ is normal bordant to an n-connected degree one normal map $\left(\bar{f}^{\prime}, f^{\prime}\right): M^{\prime} \rightarrow X$.

Problems

- In the middle dimension for $m=2 n$ Whitney's embedding theorem doesn't hold - cannot always represent $x \in \pi_{n+1}(f)$ by embeddings.
- In the middle dimension for $m=2 n+1$ we can still embed and frame, however we shall see that surgery on a framed embedding doesn't necessarily make the surgery kernel $K_{n}(M)$ any smaller...

