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f :M → X, X Poincaré complex, M manifold, degree one normal map

Definition 1.1.

Kk(M) = Kk(M̃) = Hk+1(f̃) = Hk+1(cyl(f̃), M̃)

Kk(M) = Kk(M̃) = Hk+1(f̃) = Hk+1(cyl(f̃), M̃)
Lemma 1.2.

(1) f k-connected ⇔ Ki(M) = 0, i < k and f isomorphism on π1
(2) f k-connected ⇒ Kk(M) ∼= πk+1(f) = πk+1(f̃)
(3) f is homotopy equivalence ⇔ f isomorphism on π1 and K∗(M) = 0

Proof. Apply Hurewicz and Whitehead theorems �
Lemma 1.3.

(1) Hk(M̃) = Kk(M)⊕Hk(X̃) and the same for cohomology

(2) ∩[M ] :Kn−k(M)
∼=−→ Kk(M)

Proof. Use the natural splittings which are given by the Umkehr maps

f! : H∗(M̃)→ H∗(X̃) and f ! : H∗(X̃)→ H∗(M̃)

// Kk(M) // Hk(M̃) // Hk(X̃)
0 //

f !
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Lemma 1.4.

(1) f k-connected, Kk(M) is finitely generated projective Zπ-module
(2) M → X, f k-connected, Kk(M) is stably free and Kk(M) ∼= Kk(M)∗.

Corollary 1.5. If n = 2k or n = 2k + 1, Ki(M) = 0, i ≤ k, f is isomorphism on
π1 ⇒ f is a homotopy equivalence.

Lemma 1.6. There is a natural Zπ-module homomorphism tk : πk+1(f)→ Ik(M)
Idea.

(1) An element α ∈ πk+1(f) can be represented by

Sk ×Dk
g

//

��

M

��

Dk+1 ×Dk // X

and the normal data determines a unique regular homotopy class (cf. proof
of the Surgery Step in talk 7) with a representative g 'reg. htpy g and
g :Sk ×Dk #M a framed k-immersion.

(2) Alternatively define Ik+1(f) to fit into the long exact sequence

· · · Ik+1(f)→ Ik(M)→ πk(M)→ · · ·
and identify Ik+1(f) ∼= πk+1(f)⊕ πk+1(BO,BO(n− k)). The normal data
implies that the framing obstruction of g lives in the latter summand (i.e.
the normal bundle of g is stably trivial). The map tk maps α first to
the unique representative with vanishing framing obstruction. At the end
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compose with the boundary Ik+1(f)
∂−→ Ik(M). (Cf. A. Ranicki, Geometric

and Algebraic Surgery, Prop. 11.36)

Observation 1. : f k-connected, the two pairings on the surgery kernel coincide:

Kk(M)×Kk(M)
λalg

//

��

Zπ

Ik(M)× Ik(M)

λgeom

88pppppppppppp

So far we have the following data:

(Kk(M), λ, µ)

In the following we are going to introduce the right algebraic language to describe
this data.

Definition 1.7. R is a ring with involution, P finitely generated projective module
over R . λ : P × P → R seqsuilinear ⇔

• λ(p, r1q1 + r2q2) = r1λ(p, q1) + r2λ(p, q2)
• λ(r1p1 + r2p2, q) = λ(p1, q)r1 + λ(p2, q)r2

S(P ) denotes the additive group of sesquilinear pairingss on P and can be identified
with

S(P ) = Hom(P, P ∗)

λ 7→ (ψλ :x 7→ λ(x,−))

In the following put ε = ±1. We have the ε-transposition involution operator.

Tε : S(P ) −→ S(P ),

λ 7→ Tε

with Tελ(x, y) = ελ(y, x).
ε-symmmetic group: Qε(P ) = ker(1− Tε)
ε-quadratic group: Qε(P ) = coker(1− Tε)
The two are connected by the ε-symmetrisation map Qε(P )

1+Tε−−−→ Qε(P )

Definition 1.8. An ε-symmetric form over R is a pair (P,ϕ), P f.g projective

R-module, ϕ ∈ Qε(P ). (P,ϕ) is called non-degenerate if ϕ :P
∼=−→ P ∗

Example 1.9.

(1) L f.g. projective module, P = L⊕ L∗,

ϕ :L⊕ L∗

 0 1
ε 0


−−−−−−−−→ (L⊕ L∗)∗

λ((P, f), (P ′, f ′)) = f(P ′) + εf ′(P )
Notation: Hε(L), standard hyperbolic ε-symmetric form.

(2) f :M2k → X2k degree one normal data, f k-connected. (Kk(M), λalg/geom)
is an ε-symmetric form over Zπ

(3) (Hk(Sk × Sk), λ) = H(−1)k(Z)

Definition 1.10. An ε-quadratic form (P,ψ), P f.g. projective [ψ] ∈ Qε(P ). (P,ψ)
is non-degenerated if (1 + Tε)ψ is non-degenerate (ε-symmetric form)

Lemma 1.11. (P,ψ) can equivalently be described on (P, λ, µ), (P, λ) ε-symmetric
form. µ :P → Qε(R)
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(1) µ(p+ q)− µ(p)− µ(q) = [λ(p, q)] ∈ Qε(R)

(2) µ(p) + εµ(p) = λ(p, p)
(3) µ(rp) = rµ(p)r

Proof. In one direction the correspondence is given by λ(p, q) = ψ(p)(q)+εψ(q)(p),
µ(p) = ψ(p)(p). See Ranicki, Algebraic and Geometric Surgery, Prop. 11.9 for
details. �
Example 1.12.

(1) f :M2k → X2k degree 1 normal data, f k-connected. (Kk(M), λ, µWall) is
an ε-quadratic form.

(2) The (standard) non-singular hyperbolic ε-quadratic form is given by

Hε(L) = L⊕ L∗, ψ =

(
0 1
0 0

)
Clearly (1 + Tε)H

ε(L) = Hε(L).

Theorem 1.13. (f, f) :M2k → X2k, degree 1, f :TM ⊕Ra → ξ covering f , k ≥ 3,
f k-connected. Suppose there exist u, v ∈ N such that

Kk(M)⊕Hε(Zπu) ∼= Hε(Zπv)

Then we can do a finite number of surgeries with effect (f
′
, f ′) and f ′ a homotopy

equivalence.

Proof. One can always achieve ”stabilisation” geometrically (exercise!) by doing

surgery on 0 ∈ πk(f̃) to replace M by M ′′ with

Kk(M ′′) = Kk(M)⊕Hε(Zπ).

So w.l.o.g. assumeKk(M) = Hε(Zπv). There exists a (symplectic) basis {b1, b2, . . . bn, c1, . . . , bn}
such that the quadratic form ψ on Kk(M) is given by(

0 id
0 0

)
In particular µ(bn) = 0 which by the Wall Embedding Theorem (talk 8) implies
that bn can be modified into an framed embedding. Hence we can do surgery to
“kill” the class bn. The diagramm shows that the effect of the surgery is “closer”
to a homotopy equivalence since the kernel of the effect Kk(M ′) is generated by
{b1, . . . , bn−1, c1, . . . , cn−1}. Now repeat the procedure until the kernel is zero and
apply Lemma 1.5.

Kk+1(W,M) ∼= Zπ〈φk〉
$$

&&MMMMMMMMMM
Kk(M)

$$

&&MMMMMMMMMMM
Kk(W,M ′)

Kk+1(W,M ∪M ′)
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&&MMMMMMMMMM
Kk(W )

&&MMMMMMMMMM
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Kk+1(W,M ′) = 0
::

88qqqqqqqqqq
Kk(M ′) ∼= kerβ/ imα

::

88qqqqqqqqqq
Kk(W,M)) = 0

M ′ is the effect of surgery on M , W is the trace and α and β are the maps in the
top row. Here α is given by sending the generator to bn and β by sending x to
λ(x, bn) (exercise!). �
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