Theorem. (Buchstaber). \(F_U(u, v) = \frac{\sum_{i,j \geq 0} [H_{ij}]u^i v^j}{\left(\sum_{r \geq 0} [\mathbb{C}P^r]u^r \right) \left(\sum_{s \geq 0} [\mathbb{C}P^s]v^s \right)} \), where \(H_{ij} \) (\(0 \leq i \leq j \)) are Milnor hypersurfaces and \(H_{ji} = H_{ij} \).

Proof. Set \(X = \mathbb{C}P^i \times \mathbb{C}P^j \) in Proposition 3.1. Consider the Poincaré–Atiyah duality map \(D: U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to U^2(i+j-2) \) and the map \(\varepsilon: U_*(\mathbb{C}P^i \times \mathbb{C}P^j) \to U_*(pt) = \Omega_*^U \) induced by the projection \(\mathbb{C}P^i \times \mathbb{C}P^j \to pt \). Then the composition \(\varepsilon D: U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to \Omega_*^{U^2(i+j-2)} \) takes geometric cobordisms to the bordism classes of the corresponding submanifolds. In particular, \(\varepsilon D(u + v) = [H_{ij}] \), \(\varepsilon D(u^k v^l) = [\mathbb{C}P^{i-k}] [\mathbb{C}P^{j-l}] \). Applying \(\varepsilon D \) to the equation \(u + v = F_U(u, v) = \sum \alpha_{kl} u^k v^l \) of Proposition 3.1 we obtain

\[
[H_{ij}] = \sum_{k, l} \alpha_{kl} [\mathbb{C}P^{i-k}] [\mathbb{C}P^{j-l}].
\]

Therefore,

\[
\sum_{i,j} [H_{ij}] u^i v^j = \left(\sum_{k, l} \alpha_{kl} u^k v^l \right) \left(\sum_{i \geq k} [\mathbb{C}P^{i-k}] u^{i-k} \right) \left(\sum_{j \geq l} [\mathbb{C}P^{j-l}] v^{j-l} \right),
\]

which implies the required formula. \(\square \)

Taras Panov
Department of Geometry and Topology
Faculty of Mathematics and Mechanics
Moscow State University, Leninskie Gory
119991 Moscow RUSSIA

E-mail address: tpanov@higeom.math.msu.su