Talk:Poincaré duality II (Ex)

From Manifold Atlas
Jump to: navigation, search
Note: There is a sign error in this solution to be fixed!! Give S^1 the triangulation with 0-simplices \{v_0,v_1,v_2\} and 1-simplices \{[v_0,v_1], [v_1,v_2] , [v_2,v_0] \}. Let us choose the fundamental class
\displaystyle  [S^1]=[v_0,v_1]\cup[v_1,v_2]\cup[v_2,v_0].

The diagonal approximation \tau maps [v_0,v_1] to

\displaystyle \begin{aligned} && \sum_{p+q=1} {_p[v_0,v_1]\otimes [v_0,v_1]_q} \\&=& {_0[v_0,v_1]}\otimes [v_0,v_1]_1 +  {_1[v_0,v_1]}\otimes [v_0,v_1]_0 \\&=& \{v_0\}\otimes [v_0,v_1] + [v_0,v_1]\otimes\{v_1\}.\end{aligned}
Thus the diagonal approximation of the fundamental class \tau([S^1]) is
\displaystyle  \{v_0\}\otimes [v_0,v_1] + [v_0,v_1]\otimes\{v_1\}+  \{v_1\}\otimes [v_1,v_2] + [v_1,v_2]\otimes\{v_2\} +  \{v_2\}\otimes [v_2,v_0] + [v_2,v_0]\otimes\{v_0\}.

Capping with the fundamental class sends v_0^* to

\displaystyle \begin{aligned} && E(v_0^*\otimes\tau([S^1])) \\ &=& E(v_0^*\otimes ([v_2,v_0]\otimes\{v_0\}+ \mathrm{other}\;\mathrm{terms})) \\ &=& v_0^*(v_0)\otimes[v_2,v_0]\\ &=& [v_2,v_0].   \end{aligned}

Similarly, -\cap[S^1] sends

\displaystyle \begin{aligned} v_1^* &\mapsto& [v_0,v_1], \\ v_2^* &\mapsto& [v_1,v_2], \\ [v_0,v_1]^* &\mapsto& v_0, \\ [v_1,v_2]^* &\mapsto& v_1, \\ [v_2,v_0]^* &\mapsto& v_2.  \end{aligned}

Thus we obtain the chain equivalence

\displaystyle \xymatrix{ <v_0^*,v_1^*,v_2^*> = C^0(S^1)\ar[rr]^-{(-\cap[S^1])_1} \ar[d]_{\delta} && C_1(S^1)=<[v_0,v_1],[v_1,v_2],[v_2,v_0]> \ar[d]^{d} \\ <[v_0,v_1]^*,[v_1,v_2]^*,[v_2,v_0]^*>=C^1(S^1) \ar[rr]^-{(-\cap[S^1])_0} && C_0(S^1)=<v_0,v_1,v_2>}

Where

\displaystyle (-\cap[S^1])_1 = \left( \begin{array}{ccc}0&1&0\\0&0&1\\1&0&0 \end{array}\right),\quad(-\cap[S^1])_0 = \left( \begin{array}{ccc}1&0&0\\0&1&0\\0&0&1 \end{array}\right),\quad  d= \left( \begin{array}{ccc}-1&0&1\\1&-1&0\\0&1&-1 \end{array}\right),\quad \delta = \left( \begin{array}{ccc}-1&1&0\\0&-1&1\\1&0&-1 \end{array}\right).

Note: this doesn't quite work - this is not a chain map, composing one way gives minus the composition the other way. Fixing the sign error we can take the inverse permutation matrices as the chain inverse.

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox