Homology braid II (Ex)

From Manifold Atlas
Jump to: navigation, search

1) Let (W,M,M^\prime) be a cobordism of CW-complexes. Show that the commuting diagram

\displaystyle   \xymatrix{M^\prime \ar[dr] \ar[rr] && W/M \\  & W \ar[ur] & }

induces a commutative diagram of cofibre sequences

\displaystyle  \xymatrix{ M^\prime \ar[dr] \ar@/^2pc/[rr] && W/M \ar[dr] \ar@/^2pc/[rr] && \Sigma M \\ & W \ar[dr] \ar[ur] && W/M\cup M^\prime  \ar[dr] \ar[ur] && \\ M \ar[ur] \ar@/_2pc/[rr] && W/M^\prime \ar[ur] \ar@/_2pc/[rr] && \Sigma M^\prime \\  }

and hence a commutative braid of long exact sequences in Homology

\displaystyle   \xymatrix{ H_*(M^\prime) \ar[dr] \ar@/^2pc/[rr] && H_*(W/M) \ar[dr] \ar@/^2pc/[rr] && H_{*-1}(M) \\ & H_*(W) \ar[dr] \ar[ur] && H_*(W/M\cup M^\prime)  \ar[dr] \ar[ur] && \\ H_*(M) \ar[ur] \ar@/_2pc/[rr] && H_*(W/M^\prime) \ar[ur] \ar@/_2pc/[rr] && H_{*-1}(M^\prime) \\  }


2) Now let M be a closed n-dimensional manifold and g:S^k\times D^{n-k}\hookrightarrow M a framed embedding. Denote by M' the effect of a surgery on M and by W the corresponding trace, i.e.

\displaystyle  M'=\overline{M\setminus g(S^n\times D^{n-k})}\cup D^{k+1}\times S^{n-k-1},
\displaystyle  W=M\times I\cup D^{k+1}\times D^{n-k}.

Denote by \omega the orientation character of M, i.e. \omega:\pi=\pi_1(M)\rightarrow \mathbb{Z}_2 and by \widetilde{W},\widetilde{M},\widetilde{M}' the corresponding universal covers. Write H_i(\widetilde{M}) etc. for the homology with \mathbb{Z}[\pi]-coefficients.

Show that there exists a commutative braid of exact sequences

\displaystyle  \def\curv{1.5pc}% Adjust the curvature of the curved arrows here  \xymatrix@!R@!C@!0@R=2.5pc@C=4pc{% Adjust the spacing here  H_{i+1}(\widetilde{W},\widetilde{M}) \ar[dr] \ar@/u\curv/[rr] && H_{i}(\widetilde{M}) \ar[dr] \ar@/u\curv/[rr] && H_{i}(\widetilde{W},\widetilde{M}') \\  & H_{i+1}(\widetilde{W},\widetilde{M}\cup\widetilde{M}') \ar[dr] \ar[ur] && H_{i}(\widetilde{W}) \ar[dr] \ar[ur] \\  H_{i+1}(\widetilde{W},\widetilde{M}') \ar[ur] \ar@/d\curv/[rr] && H_{i}(\widetilde{M}') \ar[ur] \ar@/d\curv/[rr] && H_{i}(\widetilde{W},\widetilde{M})  }

3) Show that the relative homology modules are given by

\displaystyle  H_{i}(\widetilde{W},\widetilde{M})=\left\{\begin{array}{ll} \mathbb{Z}[\pi] & \textrm{if } i=k+1\\ 0 & \textrm{otherwise}\\ \end{array}\right.
\displaystyle  H_{i}(\widetilde{W},\widetilde{M}')=\left\{\begin{array}{ll} \mathbb{Z}[\pi] & \textrm{if } i=n-k\\ 0 & \textrm{otherwise}\\ \end{array}\right.

4)Assume n=2k and look at the top bit of the braid

\displaystyle   \def\curv{1.5pc}% Adjust the curvature of the curved arrows here  \xymatrix@!R@!C@!0@R=2.5pc@C=4pc{% Adjust the spacing here  H_{k+1}(\widetilde{W},\widetilde{M})  \ar@/u\curv/[rr]^{\alpha} && H_{k}(\widetilde{M}) \ar@/u\curv/[rr]^{\beta} && H_{k}(\widetilde{W},\widetilde{M}') }

Let x be the Hurewicz image of [g|] with g|:S^{k}\times 0\hookrightarrow M being the restriction of the framed embedding we do the surgery on.

a) Verify that \alpha is (geometrically) given by sending the generator 1 to x.

b) Verify that \beta is (geometrically) given by sending a class y to its (equivariant) homology intersection with x, \lambda(x,y)\in\mathbb{Z}[\pi].

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox